When I first read the titile, I thought that the US is going to have to build A LOT to triple global production. Then it occured to me that the author means the US is pledging to make deals and agreements which enable other countries to build their own. Sometimes I think the US thinks too much of itself and that’s also very much part of American branding.

Where are my renewable bros at? Tell me this is bad.

  • u_tamtam@programming.dev
    link
    fedilink
    arrow-up
    5
    ·
    10 months ago

    Anyone with basic knowledge about anything knows that diversification is generally a good thing, this applies to energy as well: you don’t command the wind/sun and large scale electricity storage is to this day an unsolved problem. For all the big plans we have about a greener and carbon limited future, we need large amounts of dependable cheap and low-carbon energy, nuclear very much fits the bill (in complement to the other low-carbon energies).

      • u_tamtam@programming.dev
        link
        fedilink
        arrow-up
        1
        ·
        10 months ago

        Large scale electricity storage is very much a solved problem actually.

        I don’t want to sound pedantic, but how exactly do you believe pumped storage work? It’s not that complicated: you have a dam, i.e. renewable hydro, and when you get excess electricity from elsewhere, some of the water downstream is pumped back upstream so the dam can do its thing once again. Essentially, developing hydro storage means developing hydroelectricity and dams, but if hydro’s contribution to the grid hasn’t increased much in a very long time, it’s not because of conspiracies, but simply because most of the available capacity has been tapped already: https://en.wikipedia.org/wiki/Hydroelectric_power_in_the_United_States

        So, back to our initial problem: chemical storage (batteries) is expensive, environmentally dubious, problematic in many aspects and inefficient, chemical conversion (e.g. hydrolysis) is wasteful/inefficient, etc. So, no, we have no good answer to that.

          • u_tamtam@programming.dev
            link
            fedilink
            arrow-up
            1
            ·
            10 months ago

            Pumped hydro storage is not a dam, it’s not a power source, it is a power storage system.

            In technical terms, could you lay out what’s the difference? You’ve got a water retention system that empties into a generator and a capability to pump some of the water back upstream. What larger storages and generators do we have besides dams? None, and there’s no topographic feature that could be at an advantage there. Because the problem at hand is one of scale: https://ourworldindata.org/grapher/electricity-prod-source-stacked?country=~USA

            Assuming that energy demand remains the same (instead of increasing, which we know will be the case with more electrification), and that, to keep targetting those 4000TWh produced, we replace coal and gas by wind and solar. That would mean having to store what amounts to 2000TWh of production (under an extremely optimistic assumption of 80% storage capacity for the replaced energy only). That would mean that, just to buffer out what solar+wind require in storage, we would have to surpass what current hydro produces, 8 times over.

            I know this isn’t accurate (storage ≠ production, grid can be balanced out geographically, etc), but we are one order of magnitude in trouble already.

              • u_tamtam@programming.dev
                link
                fedilink
                arrow-up
                1
                ·
                10 months ago

                I mean, you don’t answer the billion dollar question here. Let’s not call it a dam, but a container, and let’s not mention the need to pump anything. The amount of (potential) energy you can store is a function of the volume of the above container, isn’t it? Then, could you estimate the amount of water this container would need to be able to retain in a scenario where the grid relies primarily on intermittent energy sources? And can you propose an engineering solution to contain this much amount of water?

                The intuition here is that you are re-inventing dams, without the room to build more.

                I don’t agree nor disagree with the rest of what you say, I just can’t get beyond the “energy storage is a solved problem” point yet.

                  • u_tamtam@programming.dev
                    link
                    fedilink
                    arrow-up
                    1
                    ·
                    10 months ago

                    The potential energy is determined by elevation difference and mass.

                    That’s correct, those are Joules in SI. Now if you turn this mass into mass per second by introducing the flow of water through the dam, you get the power (Watts) produced through the release.

                    But here we are talking about energy storage (Watt.hours), which is, for how long will you be able to sustain emptying your container while delivering the desired power. And obviously this is a function of how large the container is because eventually you will run out of water no matter the elevation difference.

                    So, now that we are back 3 messages up thread

                    could you estimate the amount of water this container would need to be able to retain in a scenario where the grid relies primarily on intermittent energy sources?

                    To help you out with the scale, again, your example from earlier (Bath county) has a storage capacity of only 24GWh, annual hydro production of the USA is 256TWh. Bath county has a reservoir of 34•10⁶m³, Oahe dam has 29•10⁹m³.

                    Anyway, this is a good tool to keep an eye on this “solved problem”, and relate to how the world is dealing with it, independently from the regulatory dissatisfaction you mentioned: https://sandia.gov/ess-ssl/gesdb/public/

                    And this paper goes neatly through the variables at play and why oversimplifications are not helpful: https://www.frontiersin.org/articles/10.3389/fenvs.2023.1076830/full